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Abstract Pole-zero cancellation in the polynomial quotient of the fast Padé
transform (FPT) is shown to clearly and unequivocally distinguish spurious reso-
nances from the true metabolites, in the presence of random Gauss-distributed zero
mean noise in a magnetic resonance (MR) spectrum. Thus, by applying the principle of
Froissart doublets within the FPT, noise as typically encountered in clinically encoded
MR-time signals, is completely separated from the genuine metabolic information. The
basis for the unprecedented algorithmic success of the FPT for processing of MR sig-
nals is explained within the framework of quantum mechanics. The clear, direct and
immediate importance of these findings is reviewed with respect to clinical oncology.
Besides confirming the high resolution and stability of the FPT in general studies of
MR total shape spectra, this superior resolution performance of the FPT has also been
confirmed with respect to data directly derived from malignant and benign ovarian
samples. Not only does the FPT markedly enhance resolution of MR spectra com-
pared to the conventional Fourier analysis, but it also yields the unequivocal, exact
parametric data needed to reconstruct the metabolite concentrations which character-
ize ovarian cancer and distinguish this from non-malignant lesions. These features of
the FPT are deemed to be of critical benefit to ovarian cancer diagnostics via MRS, in
particular for early detection, a goal which has thus far been elusive, but achievement
of which would definitely confer a major survival advantage. It is anticipated that MRS
via Padé processing will reduce the false positive rates of MR-based modalities and,
moreover, will further improve the sensitivity of these methods. Once this is achieved,
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and given that all MR-based diagnostic methods are free from ionizing radiation, new
possibilities for cancer screening and early detection would emerge, especially for risk
groups, e.g., the application of Padé-optimized MRS in younger women at high risk
for breast and/or ovarian cancer.

Keywords Padé approximant · Fast Padé transform · Froissart doublets · Pole-zero
cancellations · Magnetic resonance spectroscopy · Cancer diagnostics

Abbreviations
Ala Alanine
AMARES Advanced Method for Accurate Robust and Efficient Spectral fitting
au Arbitrary units
Cho Choline
Cmet Metabolite concentration
Cr Creatine
Crn Creatinine
FID Free induction decay
FFT Fast Fourier transform
FPT Fast Padé transform
FWHM Full width at half maximum
GABA Gamma amino butyric acid
Glu Glutamate
Gln Glutamine
Glc Glucose
HLSVD Hankel-Lanczos Singular Value Decomposition
ICR-MS Ion-cyclotron resonance mass spectroscopy
Iso Isoleucine (Iso)
Lac Lactate
LCModel Linear Combination of Model in vitro Spectra
LP Linear predictor
Lys Lysine
Met Methionine
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
NAA N-acetyl aspartate
NAAG N-acetyl aspartyl glutamate
PA Padé approximant
ppm Parts per million
PSA Prostate specific antigen
SNR Signal-to-noise ratio
SNS Signal–noise separation
Thr Threonine
Val Valine
VARPRO Variable Projection Method
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1 Introduction

1.1 The need to go beyond conventional data analysis

Our overall goal is to improve cancer diagnostics on a quantitative molecular basis by
retrieving key information that remains undetected with conventional data analysis,
such as the fast Fourier transform (FFT) and post processing via fitting and/or peak
integrations.

1.1.1 Paradigm shift

The undetected information can nevertheless be extracted by the novel and self-
contained data analysis, via the fast Padé transform (FPT), which we have recently
introduced and implemented into magnetic resonance spectroscopy (MRS) [1–12].
This was made possible by widening the horizons of signal processing through finding
its natural framework in a larger and well-established theory—quantum physics [12].
By identifying the quantification problem in signal processing as quantum-mechanical
spectral analysis, the key door was opened for using a highly-developed mathematical
apparatus (eigenvalue problems, etc.) to successfully overcome the otherwise insur-
mountable difficulties of the FFT, fittings and the like [5,6,8]. It is through this direct
connection of signal processing with quantum physics that a veritable paradigm shift
has been established, and the stage set for the emergence of the powerful and versa-
tile spectral analyzer—the FPT. From the standpoint of mathematical modelling, the
FPT is capable of extracting the missing information from the analyzed time signals,
because it has more degrees of freedom via the use of two polynomials in the form of
their ratio P/Q rather than only one such polynomial encountered in the FFT. Mathe-
matical modelling is indispensable in signal processing, since no encoded time signal
can be interpreted directly in terms of the sought, clinically relevant information—the
concentrations of metabolites from the tissue scanned by MRS.

1.1.2 Novel and advantageous data analysis

We have demonstrated that the FPT is the signal processing method of choice to achieve
the above-stated goal. We have performed the “proof of principle” investigations estab-
lishing that the FPT meets the most stringent criteria imposed by clinical disciplines
such as oncology for MRS and MR spectroscopic imaging (MRSI) [1–12].

The high resolution and stability of the FPT have been clearly confirmed in studies
of total shape spectra [1–4,11], thereby overcoming one of the major hindrances to
wider application of MRS and MRSI in clinical oncology.

However, as explained in detail in [13], total shape spectra do not provide the infor-
mation needed to determine how many metabolites are actually present and in which
concentrations. It is this information which is most vital for improving the diagnostic
yield and accuracy of MRS and MRSI in oncology.

Most recently, using the FPT we have performed the benchmark studies in which
this method was shown to provide exact quantification of MRS signals and thereby
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metabolite concentrations are reliably and unequivocally obtained with an intrinsic
and robust error analysis [5,7,8]. These studies are summarized briefly herein.

We have also demonstrated that the FPT unambiguously distinguishes genuine from
spurious peaks in MR spectra. The number of spurious resonances is always several
times larger than the number of genuine resonances. It is of utmost importance for
trustworthy clinical applications that the genuine information is identified with cer-
tainty by confidently disentangling it from noise. As reviewed herein, via the powerful
concept of Froissart doublets (pole-zero cancellations), the FPT is shown to achieve
this task [6]. The clinical significance of this capability of the FPT is best appreciated
by recalling that measured MRS time signals are always corrupted with noise and,
therefore, the major problem is to identify the genuine metabolites with fidelity.

We have now applied the FPT for the first time to MRS signals from malignant
and benign ovarian lesions [14,15]. We chose this research area because of its critical
clinical importance, since early ovarian cancer detection procures a major survival
benefit, but the currently available methods have low diagnostic accuracy, due mainly
to low specificity. Because of the small size and motion of this organ, in vivo MRS is
severely hampered by problems of low resolution, while it is seen with in vitro MRS
that a number of MR-observable compounds can help identify malignant adnexal
lesions. We have shown that the Padé-optimization provides clearly superior resolu-
tion compared to the customary data analytical method, i.e., the FFT. We also have
demonstrated how the FPT yields the unequivocal, exact parametric data needed to
reconstruct the metabolite concentrations which characterize ovarian cancer and dis-
tinguish this from non-malignant samples. These findings open an entirely new avenue
for improving ovarian cancer diagnostics. We have also begun investigations along
these lines for breast and prostate cancer and melanoma using the FPT and certain
preliminary results are described in [13]. Therein we also describe preliminary find-
ings applying the FPT to magnetic resonance imaging (MRI), two-dimensional MRS
and MRSI, with a particular focus on improved target definition for radiotherapy, dose
planning and post-operative follow-up.

2 Theory

2.1 Benchmark reconstruction via Padé optimization of all parameters needed
for reliable quantification of MRS signals

We have now performed studies showing that the FPT provides exact quantification
of MRS signals and thereby metabolite concentrations are reliably and unequivocally
obtained with an intrinsic and robust error analysis. In Refs. [5,9,12] validation is
given for the powerful computational algorithms by which the FPT yields quantitative
spectral parameters. This is done without fitting and the solution is unique. Further,
the FPT outperforms other parametric estimators, e.g., the linear predictor (LP) [16],
Hankel-Lanczos Singular Value Decomposition (HLSVD) [17], etc. Likewise, the
FPT outperforms all fitting techniques used in MRS: Variable Projection Method
(VARPRO) [18], Advanced Method for Accurate Robust and Efficient Spectral fitting
(AMARES) [19], Linear Combination of Model in vitro Spectra (LCModel) [20], etc.
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Confidence in the FPT is built systematically by considering theoretically generated
as well as encoded free induction decays (FIDs).

2.2 Proof of the vital importance of quantum mechanics in signal processing

The textbook [12] provides advanced analysis of virtually all the significant signal
processing methods. In particular, Ref. [12] establishes the theoretical criteria of what
a reliable signal processor is (and especially also what it is not) supposed to be. Based
upon such criteria, Ref. [12] has built the most practical algorithms for versatile appli-
cations, including those in MRS. These algorithms have now become widely used in
such diverse disciplines as physics, chemistry, biology as well as medicine. This shows
again and again that the correct theoretical basis is of primary importance to be estab-
lished first, and with this accomplished, the ensuing implementations are bound to
succeed. The main conclusion from Ref. [12] of paramount practical relevance is that
for a successful application of parametric signal processing, the physics of the studied
phenomenon must be accurately described by an appropriate mathematical model.
This model can, in turn, be used to extract the parameters of the analyzed signal. Such
reconstructed signal parameters are given by the unique set of nodal frequencies and
amplitudes {ωk, dk}(k = 1, 2, 3, . . . , K ), as well as the order K of the underlying
system (in MRS, K is the exact number of genuine resonances)1. This latter set of
parameters holds the entire sought information, which then uncovers the underlying
dynamics and mechanisms that actually produced the encoded time signal. What sets
Ref. [12] apart from previous, related studies within MRS is a deep realization that
signal processing, which has thus far been considered as a discipline on its own, is
basically a part of a larger theoretical framework—the most successful physics theory:
quantum mechanics. This sprang from the proof of the equivalence of the most generic
time signals with the fundamental quantum-mechanical entities—the autocorrelation
functions. Naturally, such a proof laid the basis for the most adequate physics (as per
the above request)—quantum mechanics to spectrally analyze time signals. Equally
naturally, this proper physics brought the correct mathematical model for signals: (i)
autocorrelation functions and (ii) Green functions for the most adequate descriptions
in the time and frequency domain, respectively.

Of critical importance is that such a dual mathematical modelling in the two com-
plementary domains (time and frequency) is not imposed ad hoc or by some phe-
nomenological set of procedures and recipes that are otherwise abundant in the MRS
literature [18–20] and beyond. Rather, the mathematical model for any time signal
and the corresponding spectrum emerges uniquely from the quantum dynamics of the
investigated system.

This is the case because the dynamics, as the evolution in time, is rooted in the
system’s so-called dynamics operator, which is recognized in quantum mechanics as
the time evolution operator, U (t). For conservative systems, the Hamiltonians H , as
the sum of kinetic and potential energy operators, are stationary. This means that the

1 Each metabolite, being a molecule, can have more than one resonance.
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time-dependent Schrödinger equations:

i
∂

∂t
�(t) = H�(t), (1)

impose the unique form for U (t) as the exponential operator:

U (t) = e−i Ht , (2)

which governs the system’s dynamics in the quantum-mechanical way. This enables
us to find the non-stationary state �(t) of the examined system at any time t , if we
know the system’s initial state �0 at t = 0 (determinism of quantum mechanics).
The prescription for finding the state of the system is straight-forward and consists of
applying the evolution operator U (t) to �0, to yield:

�(t) = U (t)�0. (3)

Of course, the Hamiltonian H , the initial state �0 and, hence, the evolution opera-
tor U (t) are all unknown prior to the analysis. However, these unknown quantum-
mechanical entities are all ingrained in a single quantity called the auto-correlation
function, C(t). As its name indicates, C(t) correlates the state of the system from
one time instance to another, say from t = 0 [�0] to t �= 0 [�(t)]. Intuitively and
plausibly, the degree of correlation is the largest (smallest) for the maximum (mini-
mum) overlap of �(t) and �0. In quantum mechanics, such an overlap is determined
by the scalar or inner product of �(t) with �0, as symbolized via the projection of
|�0(t)〉 onto 〈�0|, i.e., 〈�0|�(t)〉. Thus, the auto-correlation function C(t) is defined
precisely by this latter overlap:

C(t) ≡ 〈�0 |�(t) 〉 = 〈�0| U (t) |�0〉 . (4)

To obtain the explicit functional dependence of the auto-correlation function C upon
t , one uses the time-independent Schrödinger equation as the frequency eigenvalue
problem,

H�k = ωk�k (k = 1, 2, . . . , K ). (5)

Here, �k is the complete stationary state of the system and ωk is the corresponding fun-
damental angular frequency (ωk = 2π fk), where fk is the associated linear frequency.
One of the cornerstones of quantum mechanics is the statement of completeness, which
asserts that everything which could possibly be learned about any system is contained
in the set of the eigensolutions {ωk, �k} of the above Schrödinger eigenvalue problem.
In other words, once the set {ωk, �k} becomes available, we have the entire informa-
tion about the studied system. Conversely, if {ωk, �k} are known, we can reconstruct
the dynamics of the system via the so-called spectral representation/decomposition of
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H or U (t) as:

H =
K∑

k=1

ωkπk, (6)

and

U (t) =
K∑

k=1

πke−iωk t , (7)

where πk is the projection operator,

πk = |�k〉 〈�k | , Im(ωk) < 0. (8)

Hereafter, Re(u) and Im(u) denote the real and imaginary parts of a complex number
u. Inserting this latter spectral representation for U (t) into Eq. (4) yields, at once, the
sought functional dependence of C upon t as:

C(t) =
K∑

k=1

dke
−iωk t

, (9)

where

dk = 〈�0|�k〉2 . (10)

Hereafter, we use the symmetric version of the scalar product with no complex con-
jugation on either of the involved functions, i.e., 〈 f |g〉 = 〈g| f 〉. Thus, the end result
is the expression for the autocorrelation function C(t) as a linear superposition of K
damped complex exponentials. This coincides with the like and ubiquitous form of a
generic time signal c(t). Hence, the equivalence of quantum-mechanical auto-corre-
lation functions with time signals C(t) = c(t) [12,21,22]. Thus, we see that this latter
mathematical model for a time signal, as a sum of damped complex exponentials,
is imposed by quantum mechanics and, therefore, emboldens the entire information
about the studied system (completeness statement of quantum mechanics, as stated
above).

How does this quantum-mechanical signal processing compare with fitting e.g., an
MRS signal to the same sum of damped complex exponentials as is customarily done
in e.g., AMARES, LCModel and other least-square adjustable algorithms?

(i) The first, most dramatic and clinically relevant difference is the non-uniqueness
of fitting, as opposed to the uniqueness of the quantum-mechanical prescription.
Specifically, widely different combinations of the signal’s parameters {ωk, dk}
and their number K , can produce the same least-square type of fit to c(t). Of
course, such a situation is untenable in the clinical setting. By contrast, quantum
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mechanics decomposes a given time signal c(t) into a unique set of precisely
K complex damped harmonics.

(ii) The second basic difference between fitting and quantum-mechanical signal
processing is that the former has no natural relationships between ωk and
dk , as opposed to the latter where dk is given by Eq. (10), with ωk being
implicitly present via �k . The implication of this difference is that fitting tries
to adjust dk and ωk independently of each other, while minimizing the error,
such that wide variations in e.g., ωk can be largely compensated by equally wide
variations in dk thus inevitably leading to non-unique estimates. By contrast,
dk from quantum mechanics is constrained to obey a particular relationship
(10) which, as we saw, emerges from the first principles of physics. We have
shown in Ref. [12] that it is this latter constraint on dk which guarantees the
uniqueness of the quantum-mechanically reconstructed spectral amplitudes
{dk} for the corresponding set {ωk} of the fundamental frequencies that are
also retrieved uniquely. Moreover, the model order K , or equivalently, the
number of resonances, is also reconstructed exactly in quantum mechanics,
in contradistinction to guessing, as germane to all the fitting routines used
in MRS (LCModel, AMARES, VARPRO, etc). In this way, quantum mechan-
ics provides us with the possibility of the exact extraction of all the spectral
frequencies and amplitudes of all the genuine metabolites, as well as their
true number. The key clinical ramification of this latter feature is the unique,
and, hence, the most reliable quantification of all the physical metabolite
concentrations.

Once the time signal’s parameters {ωk, dk}(1 ≤ k ≤ K ) have become available, the
corresponding spectrum is automatically given by the Green function in the Heaviside
partial fraction decomposition:

G(ω) =
K∑

k=1

dk

ω − ωk
. (11)

The r.h.s. of this equation can explicitly be summed up to give the unique polynomial
quotient PK−1(ω)/QK (ω), which is recognized as the so-called para-diagonal FPT.
This shows that the FPT is the algorithm of quantum mechanics and, as such, is the
method of choice for spectral analysis of generic time signals, including those from
MRS. Time-frequency duality implies that the inverse FPT computed from the Padé
spectrum PK−1/QK will yield the time signal c(t) as a sum of K damped complex
exponentials. This determines that the optimal mathematical model for the frequency
spectrum of these time signals is prescribed quantum-mechanically, to be the ratio
of two polynomials, i.e., the FPT. In other words, just as in the time domain where
quantum mechanics predicts the form of the time signal as the sum of damped expo-
nentials, by virtue of the time-frequency dual representation, the same physics auto-
matically prescribes that the frequency spectrum is given by the Padé quotient of two
polynomials. This is the origin of the subsequently revealed unprecedented algorith-
mic success of the FPT, via its demonstrable, exact reconstructions, as shown in Refs.
[6,7].
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3 Results

3.1 The fast Padé transform: specific achievements in quantification
of MRS signals

We have noted that there is an urgent need for accurate quantification to determine
metabolite concentrations, so that MRS can be better used to detect and characterize
cancers, with clear distinction from non-malignant processes. Metabolite concentra-
tions can only be accurately computed if the spectral parameters are obtained in a
reliable way with an adequate error analysis, accompanied by the ability to clearly
identify and thereby separate noise from the physical signal. This is uniquely provided
by the FPT.

The recent study [5] represents a critical step forward for signal processing in MRS,
with particular relevance to clinical oncology, due to the unprecedented capability of
the FPT to unambiguously resolve and quantify all the physical resonances.

We have performed computations [5,6] using the FPT to reconstruct spectral param-
eters for time signals that closely match FIDs encoded on clinical scanners via proton
MRS from the brain of a healthy volunteer [23,24]. Included in this successful recon-
struction are not only isolated and closely overlapping resonances, but also those which
are nearly degenerate. These latter resonances cannot be possibly even detected via
the total shape spectrum or error analysis. Only the powerful and accurate parametric
analysis provided e.g., by FPT can detect and also exactly quantify such resonances,
which, as discussed, are often of major clinical importance.

In Table 1 adapted from Ref. [5] we present the reconstructed spectral parame-
ters from the FPT at five partial signal lengths (N/32 = 32, N/16 = 64, N/8 =
128, N/4 = 256 and N/2 = 512) and at the full signal length (N = 1024). The left
column of Table 1 through panels (i), (ii) and (iii) shows the parameters of the found
10, 14 and 20 resonances at N/32 = 32, N/16 = 64, N/8 = 128, respectively. The
results for these detected 10, 14 and 20 resonances from panels (i), (ii) and (iii) are
only approximations to the corresponding exact input values of the spectral parame-
ters [that coincide with the right column of Table 1, panels (iv), (v) and (vi)]. This is
due to relatively small numbers of signal points employed (N/M ≤ 128). The right
column of Table 1 via panels (iv), (v) and (vi) shows the spectral parameters retrieved
at N/4 = 256, N/2 = 512 and N = 1,024, respectively.

It has been demonstrated in Refs. [5,8] that for a quarter (N/4 = 256) of the full
signal length N , the FPT was able to reconstruct all 25 resonances with the exact val-
ues for each of their spectral parameters. Stunningly, these values remain completely
stable when convergence is passed with further signal points included, as shown in
panels (v) and (vi) of Table 1. This is due to the pole-zero cancellation, or equivalently,
Froissart doublets, presented in the next section. Achieving convergence represents
the “signature of reconstruction” of the true number K of resonances. Further increase
of K does not change the converged result for the Padé spectrum in the FPT.

These points are also graphically illustrated in Fig. 1, in which it is seen that the
estimated parameters via the FPT are employed to construct the absorption compo-
nent spectrum (left panels) and this is compared to the total shape spectrum (right
panels). While the shape (or envelope) spectrum has converged at the partial signal
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Table 1 Numerical values of the spectral parameters (position Re( f −
k ), width Im( f −

k ) and height d−
k =

|d−
k |, all phases of d−

k ’s set to zero) from a time signal reminiscent of an encoded FID via MRS from
human brain at the magnetic field strength B0 = 1.5 T [23]. These parameters are reconstructed by solving
the quantification problem at different signal lengths [N/32 = 32 (i), N/16 = 64 (ii), N/8 = 128 (iii),
N/4 = 256 (iv), N/2 = 512 (v), and N = 1024 (vi)], using the variant FPT (−)of the fast Padé transform
with the initial convergence region outside the unit circle. Convergence is achieved at N/4 = 256, and
remains stable at longer signal lengths. Adapted from Ref. [5]. Hereafter, arbitrary units are abbreviated as
au and parts per million as ppm

(i)  N/32 = 32:  Position  Re(f −
k

 ), Width  Im(f −
k

 ), Height  d−
k

  1   1.010   0.206   0.223

  3   1.514   0.421   0.251

  4   1.642   0.097   0.039

  6   2.065   0.069   0.340

  12   2.638   0.276   0.423

  15   3.054   0.138   0.414

  17   3.377   0.037   0.017

  23   3.972   0.113   0.230

  24   4.092   0.086   0.089

  25   4.681   0.135   0.111

Peak # Position (ppm) Width (ppm) Height (au)

(iv)  N/4 = 256:  Position  Re(f −
k

 ), Width  Im(f −
k

 ), Height  d−
k

  1   0.985   0.180   0.122
  2   1.112   0.257   0.161
  3   1.548   0.172   0.135
  4   1.689   0.118   0.034
  5   1.959   0.062   0.056
  6   2.065   0.031   0.171
  7   2.145   0.050   0.116
  8   2.261   0.062   0.092
  9   2.411   0.062   0.085

  10   2.519   0.036   0.037
  11   2.676   0.033   0.008
  12   2.676   0.062   0.063
  13   2.855   0.016   0.005
  14   3.009   0.064   0.065
  15   3.067   0.036   0.101
  16   3.239   0.050   0.096
  17   3.301   0.064   0.065
  18   3.481   0.031   0.011
  19   3.584   0.028   0.036
  20   3.694   0.036   0.041
  21   3.803   0.024   0.031
  22   3.944   0.042   0.068
  23   3.965   0.062   0.013
  24   4.271   0.055   0.016
  25   4.680   0.136   0.113

Peak # Position (ppm) Width (ppm) Height (au)

(ii)  N/16 = 64:  Position  Re(f −
k

 ), Width  Im(f −
k

 ), Height  d−
k

  1   0.989   0.180   0.130

  2   1.121   0.241   0.148

  3   1.562   0.207   0.195

  5   2.029   0.012   0.026

  6   2.055   0.071   0.376

  9   2.475   0.194   0.315

  10   2.589   0.054   0.060

  15   3.058   0.051   0.161

  16   3.237   0.071   0.178

  19   3.564   0.045   0.035

  21   3.778   0.068   0.075

  22   3.941   0.048   0.087

  24   4.269   0.055   0.016

  25   4.680   0.136   0.113

Peak # Position (ppm) Width (ppm) Height (au)

(v)  N/2 = 512:  Position  Re(f −
k

 ), Width  Im(f −
k

 ), Height  d−
k

  1   0.985   0.180   0.122
  2   1.112   0.257   0.161
  3   1.548   0.172   0.135
  4   1.689   0.118   0.034
  5   1.959   0.062   0.056
  6   2.065   0.031   0.171
  7   2.145   0.050   0.116
  8   2.261   0.062   0.092
  9   2.411   0.062   0.085

  10   2.519   0.036   0.037
  11   2.676   0.033   0.008
  12   2.676   0.062   0.063
  13   2.855   0.016   0.005
  14   3.009   0.064   0.065
  15   3.067   0.036   0.101
  16   3.239   0.050   0.096
  17   3.301   0.064   0.065
  18   3.481   0.031   0.011
  19   3.584   0.028   0.036
  20   3.694   0.036   0.041
  21   3.803   0.024   0.031
  22   3.944   0.042   0.068
  23   3.965   0.062   0.013
  24   4.271   0.055   0.016
  25   4.680   0.136   0.113

Peak # Position (ppm) Width (ppm) Height (au)

(iii)  N/8 = 128:  Position  Re(f −
k

 ), Width  Im(f −
k

 ), Height  d−
k

  1   0.985   0.180   0.122
  2   1.112   0.256   0.160
  3   1.546   0.169   0.123
  4   1.704   0.133   0.051
  5   2.013   0.073   0.347
  6   2.044   0.043   0.330
  7   2.156   0.036   0.039
  9   2.351   0.015   0.007

  10   2.510   0.130   0.200
  12   2.654   0.049   0.061
  13   2.808   0.018   0.001
  15   3.072   0.053   0.184
  16   3.231   0.078   0.207
  17   3.366   0.036   0.011
  19   3.588   0.021   0.024
  20   3.700   0.042   0.047
  21   3.803   0.027   0.037
  22   3.944   0.045   0.084
  24   4.271   0.055   0.016
  25   4.680   0.136   0.113

Peak # Position (ppm) Width (ppm) Height (au)

(vi)  N = 1024:  Position  Re(f −
k

 ), Width  Im(f −
k

 ), Height  d−
k

  1   0.985   0.180   0.122
  2   1.112   0.257   0.161
  3   1.548   0.172   0.135
  4   1.689   0.118   0.034
  5   1.959   0.062   0.056
  6   2.065   0.031   0.171
  7   2.145   0.050   0.116
  8   2.261   0.062   0.092
  9   2.411   0.062   0.085

  10   2.519   0.036   0.037
  11   2.676   0.033   0.008
  12   2.676   0.062   0.063
  13   2.855   0.016   0.005
  14   3.009   0.064   0.065
  15   3.067   0.036   0.101
  16   3.239   0.050   0.096
  17   3.301   0.064   0.065
  18   3.481   0.031   0.011
  19   3.584   0.028   0.036
  20   3.694   0.036   0.041
  21   3.803   0.024   0.031
  22   3.944   0.042   0.068
  23   3.965   0.062   0.013
  24   4.271   0.055   0.016
  25   4.680   0.136   0.113

Peak # Position (ppm) Width (ppm) Height (au)

CONVERGENCE OF SPECTRAL PARAMETERS in the FAST PADE TRANSFORM, FPT  (−) :  SIGNAL LENGTH  N/M, N=1024, M=1−32
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Fig. 1 Absorption component shape spectra reconstructed by the FPT(−) from a time signal reminiscent
of an encoded FID via MRS from human brain at the magnetic field strength B0 = 1.5 T [23] for each
resonance (left) and their sums as total shape spectra (right). The displayed results correspond to three
different partial signal lengths NP = 180, 220 and 260. Total shape spectra at NP = 180 on panel (iv)
converge despite the missing peak #11 and the related overestimate of peak #12. Adapted from Ref. [5]
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length, NP = 180 (top right panel), this is not the case for the component spectrum.2

As seen on the top left panel of Fig. 1 at the partial signal length NP = 180, peak
# 12 is overestimated whereas peak # 11 is missing. It is at the partial signal length
NP = 220 [middle left panel (ii)] that the very small peak #11 is first detected and the
component shape spectrum has converged. This is also shown in [13] which provides a
generic illustration of the importance of obtaining a component shape spectrum prior
to the total shape spectrum, as opposed to fitting which tries to uncover the component
spectra underneath a given total shape spectrum.

3.1.1 Machine accurate quantification of magnetic resonance spectroscopic signals
with Padé optimization

In Ref. [25], we performed further computations using the FPT to reconstruct spectral
parameters for an MRS time signal that closely matches FIDs encoded via proton
MRS from the brain of a healthy volunteer [23,24]. Therein it is demonstrated that
at full convergence (NP = 220), the exact numerical values of all the fundamen-
tal frequencies and amplitudes { fk, dk} are reconstructed to 12 given decimal places.
This confirms the achievement of machine accuracy (i.e., exact computer-wise) in the
reconstruction of the spectral parameters, from which metabolite concentrations are
then obtained.

In Table 2, we present the reconstructed spectral parameters at the two partial signal
lengths, NP = 180 and NP = 220, by reference to [25]. Therein, it is seen that at
the signal length NP = 220, full numerical convergence is attained to 12 digits of
accuracy.

Detailed numerical analyses from Refs. [5,8] reveal that these 12 digits of accu-
racy are stable (by virtue of Froissart doublets; see later on) at longer signal lengths:
N/4 = 256, N/2 = 512 and N = 1024. This further confirms the reliability of
the FPT for analysis of MR time signals, in contrast to other parametric estimators,
which are typically unstable as a function of signal length for a given bandwidth. In
Ref. [7], we demonstrate and explain in detail, why mathematical methods through
Padé-optimization of MRS can indeed play a decisive role in early cancer diagnostics,
in particular by detecting and quantifying overlapping resonances that often are the
most critical for identifying malignancy [26,27].

Thus, these benchmark studies have now been performed in which the FPT was
shown to provide exact quantification of MRS signals and thereby metabolite concen-
trations are reliably and unequivocally obtained with the accompanying error analysis
of proven validity. Together with the practical implementation described in [13], a
valid and exact approach to quantification of MRS signals has now been achieved. Via
this type of implementation, Padé-optimization MRS is expected soon to become a
standard diagnostic tool for clinical oncology.

2 The displayed numbers of the component peaks on the converged component shape spectra (panels 2 &
3) correspond to the following metabolites: 1–4 (mobile lipids), 5 (Gaba), 6 (NAA), 7 (NAAG), 8 (Gaba),
9 (Glutamate), 10 (Glutamine), 11 (Aspartate), 12 (NAA), 13 (Aspartate), 14 (Creatine), 15 (Phosphocrea-
tine), 16 (Choline), 17 (Phosphocholine), 18 (Taurine), 19 (Myoinositol), 20 (Glutamate), 21 (Glutamine),
22 (Creatine), 23 (Phosphocreatine), 24 (Phosphocholine), 25 (Water). For a graphic map of metabolite
assignments corresponding to MRS from normal human brain, see [13].
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Table 2 Reconstruction of numerical values of the input complex frequencies and amplitudes { f −
k , d−

k }
using the FPT(−) at two partial FID lengths, NP = 180 and 220. All the phases in the input parameters dk
are set to zero so that dk = |dk |. The input FID is defined by cn = ∑K

k=1 dk exp(2inπτ fk )(Im fk > 0)

where K = 25 and τ is the sampling time. Headings X NP (X = A, B, C; NP = 180, 220) denote the
number of exact digits in the Padé-reconstructed spectral parameters. The minus signs in the 11th row of
columns X180(X = A, B, C) indicate that the 11th peak is missing in the reconstruction at NP = 180.

Columns X220(X = A, B, C) show that using only 220 FID points out of 1024 sampled input data, the
FPT(−) retrieves exactly all the spectral parameters with their original 12 digit accuracy for the 25 peaks,
including the two near degenerate real frequencies (peaks 11 and 12) that are separated by an infinitesimally
small splitting (10−11 ppm). Here, A, B, C relate to Re( fk ), Im( fk ) and |dk |, respectively. Adapted from
Ref. [25].

Proof-of-principle accuracy of FPT(−) for quantification in MRS; partial FID lengths: NP = 180, 220

no
k Re( fk ) (ppm) A180 A220 Im( fk ) (ppm) B180 B220 |dk | (au) C180 C220

1 0.98502379048 5 12 0.17990702201 6 12 0.12201338573 5 12
2 1.11200690857 5 12 0.25659054387 5 12 0.16102301354 4 12
3 1.54801482971 5 12 0.17204537140 5 12 0.13503330578 4 12
4 1.68903176043 4 12 0.11770166604 6 12 0.03401254085 6 12
5 1.95901160274 4 12 0.06238018044 5 12 0.05600424857 4 12
6 2.06502407981 4 12 0.03125260267 5 12 0.17102358306 4 12
7 2.14500270476 4 12 0.05002544195 3 12 0.11603368953 3 12
8 2.26101532905 4 12 0.06237934902 3 12 0.09202335049 3 12
9 2.41102150732 4 12 0.06237422557 3 12 0.08501750894 3 12
10 2.51903027327 3 12 0.03599412378 4 12 0.03700259438 4 12
11 2.67601690282 - 12 0.03282539014 - 12 0.00803536496 - 12
12 2.67601690283 4 12 0.06237759999 2 12 0.06301390467 2 12
13 2.85502705876 3 12 0.01612538422 3 12 0.00502635089 4 12
14 3.00901406482 3 12 0.06391077363 3 12 0.06503575473 2 12
15 3.06703685438 3 12 0.03599492238 3 12 0.10101269056 2 12
16 3.23902878775 3 12 0.05002202198 3 12 0.09600757431 2 12
17 3.30101387656 2 12 0.06390293515 3 12 0.06502706396 2 12
18 3.48103205784 3 12 0.03106596433 3 12 0.01101319057 3 12
19 3.58401389769 4 12 0.02821228070 4 12 0.03603204548 3 12
20 3.69403557653 4 12 0.03632802757 5 12 0.04101607586 4 12
21 3.80302402567 4 12 0.02390558758 4 12 0.03102656032 4 12
22 3.94401303293 4 12 0.04153226854 3 12 0.06800389846 3 12
23 3.96503686091 3 12 0.06237504151 3 12 0.01303609434 3 12
24 4.27101589852 6 12 0.05493585133 6 12 0.01601376287 7 12
25 4.68000000000 7 12 0.13614250986 7 12 0.11302657043 6 12

3.2 Signal–Noise Separation (SNS): reliable procedure for separating physical from
non-physical (noise) information in MRS

In Ref. [6], we have validated a powerful means of determining whether a given recon-
structed resonance is true or spurious. This is done by computing a sequence of the
Padé shape spectra {Pm/Qm}(m = 1, 2, 3, . . .) in the frequency range of interest, say
0.5–5 ppm. Here, the fingerprint of detection of the exact number K of resonances is
the attainment of the stabilization value m = m′ after which a saturation is systemati-
cally maintained by observing that Pm′+q/Qm′+q = Pm′/Qm′ (q = 1, 2, 3, . . .). This
critical transition (m = m′) yields the sought K as K = m′, which has been verified
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to work in practice with MRS signals [6]. This is the concept of Froissart doublets, or
equivalently, pole-zero cancellations [5,6,28].

Specifically, the computation is carried out by gradually and systematically increas-
ing the degree of the Padé polynomials. As these degrees change, the reconstructed
spectra fluctuate until stabilization occurs. The value of the polynomial degree at which
the predetermined level of accuracy is achieved represents the sought exact number
of resonances K . This constancy of the reconstructed values can be obtained, e.g., via
the cannonical representation of the Padé polynomial quotients:

P±
K−1(z

±1)

Q±
K (z±1)

= p±
K−1

q±
K

∏K−1
k=1 (z±1 − z̃±

k )
∏K

k′=1(z
±1 − z±

k′)
, (12)

where z̃±
k and z±

k are the zeros of P±
K−1 and Q±

K , respectively. The quotient form from
(12) leads to cancellation of all the terms in the Padé numerator and denominator
polynomials, when the computation is continued after the stabilized value of the order
in the FPT has been attained, so that:

P±
K−1+m(z±1)

Q±
K+m(z±1)

= P±
K−1(z

±1)

Q±
K (z±1)

, (m = 1, 2, 3, . . .). (13)

The Cauchy residue of P±
K−1/Q±

K from (12) represents the amplitudes d±
k whose

analytical expressions are:

d±
k = p±

K−1

q±
K

∏K−1
k′=1 (z±1

k − z̃±
k′)

∏K
k′=1,k′ �=k(z

±1
k − z±

k′)
. (14)

Therefore, it is obvious from (14) that whenever z±
k = z̃±

k , the amplitudes d±
k of the

poles from the Froissart doublets are exactly zero:

d±
k = 0 for z±

k = z̃±
k . (15)

Figure 2 shows the result for a noise-corrupted MR time signal. Therein, Gauss-
distributed zero mean noise was added with a standard deviation σ = 0.00289 root-
mean-square of the noiseless FID. The number 0.00289 is approximately 1.5% of the
height of the weakest resonance in the spectrum (#13 aspartate at 2.855 ppm), and this
is considered quite realistic for encoded data with good signal-to-noise ratio (SNR), as
well as being sufficient to illustrate the principles of Froissart doublets. Higher noise
levels, up to 100% of the height of the weakest resonance have also been examined
and the Froissart concept is found to hold in those cases, as well. In the “noisy” case
from Fig. 2, there was a total of 128 resonances, 103 of which were spurious. Using
the FPT(+), all the Froissart doublets were clearly identified by pole-zero cancella-
tion and with their imaginary components of the frequencies being negative and the
corresponding zero-valued amplitudes. The 25 genuine resonances were all exactly
reconstructed at one-quarter of the total signal length (N/4 = 256) with the imaginary
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Fig. 2 Use of Froissart doublets to unequivocally extract the exact number KG of genuine frequencies
and amplitudes from the total number KT ≡ K of the spectral parameters reconstructed by the FPT(+)

for the noise-corrupted time signal. The FPT(+) separates the genuine from the spurious frequencies in
the two non-overlapping regions, Im( f +

k ) > 0 and Im( f +
k ) < 0, respectively. All the spurious (Froissart)

amplitudes are also identified by their zero values. Adapted from Ref. [6]

component of the frequencies being positive [top panel (i) of Fig. 2]. In the bottom
panel (ii) of Fig. 2, it is seen that all the spurious (Froissart) amplitudes are equal to
zero, while the absolute values of the amplitudes are non-zero for the true resonances.

More specifically, in Fig. 2, we give the Argand diagram for complex frequencies.3

In this figure, we illustrate the concept of Froissart doublets for a synthesized FID
derived from realistic MRS data encoded at 1.5 T (the same as was used in Table 1
and Fig. 1). We use the form of the FPT with its convergence region inside the unit

3 In general, an Argand plot for a given complex quantity shows the variation of the imaginary versus real
part of that quantity. It is a very useful concept which is extensively used in physics and chemistry.
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circle, namely FPT(+) [3,12]. After convergence has been reached, there is a total of
128 resonances, but only 25 of these are genuine. The remaining 103 are spurious
resonances. The top panel (i) in Fig. 2 shows that all these spurious resonances are
Froissart doublets, namely that the poles stemming from the denominator polyno-
mial, marked as open circles automatically coincide with the corresponding zeros of
the numerator polynomial denoted by small filled circles (dots). This is a graphic
representation of pole-zero cancellation. In contrast, there are 25 tightly-packed gen-
uine resonances. In the case of the FPT(+), all the imaginary parts of the genuine
and spurious frequencies are positive and negative, respectively. Thereby, the genuine
chemical shifts between 0.985 and 4.68 ppm are clearly separated from the spurious
resonances.

In the bottom panel (ii) of Fig. 2, it can be seen that all the spurious resonances
have amplitudes equal to zero, as per (15). At one-quarter of the total signal length
(N/4 = 256) for the 25 true reconstructed resonances the absolute values of the ampli-
tudes are all seen to have non-zero values. Moreover, these exactly coincide with the
input data, since full convergence has been achieved at this signal length. The spurious
resonances appear in all the parametric estimators that must use more than twice the
number of unknown frequencies and amplitudes. This leads to an over-determined
system which yields more resonances than the actual number present in the analyzed
signal. The extra resonances are spurious and act as “noise” or are “noise-like. The
problem is to identify these and then discard them. Among all the estimators, only the
FPT can achieve this task with certainty, and this is done through the concept of the
Froissart doublets, which acts as a powerful filter of spurious “noisy” or “noise-like”
resonances, as illustrated in Fig. 2. Therefore, such an application of the Froissart
doublets can be viewed as the introduction of a special filter, thereafter termed the
Froissart filter.

Overall, the fast Padé transform is shown to resolve and quantify tightly
overlapped and even nearly degenerate resonances that are abundantly seen in MR
spectra generated using encoded in vivo time signals. Crucially, in the FPT, pole-zero
cancellation (Froissart doublets) can be used to unequivocally distinguish true and spu-
rious resonances. This is demonstrated not only in the noise-free case [13], but also
for synthesized MR time signals corrupted by noise [6] at a level similar to realistic
encoding conditions (Fig. 2).

Distinction of genuine from spurious peaks has been one of the thorniest challenges
to MRS. The number of spurious resonances is always several times greater than the
true metabolites. To reemphasize, in the present study there were 128 resonances,
but only 25 were genuine. Thus, 103 or over 80% were spurious. It is obviously an
essential precondition for trustworthy clinical applications of MRS that the genuine
information be clearly and unambiguously identified. In recent studies [6,25] via the
powerful concept of Froissart doublets (pole-zero cancellations) [28], the FPT has
been shown to achieve this task. Here we have demonstrated that all the spurious
resonances are clearly and unequivocally separated from the true metabolites, in the
presence of noise as typically encountered in clinically encoded time signals with good
SNR. These findings offer the solution to one of the most difficult problems hampering
wider implementation of MRS in clinical oncology. The same problem of separation
of genuine from spurious information in experimental data is present everywhere else,
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whenever dealing with time signals encoded by all the other measuring methods, e.g.,
ion-cyclotron resonance mass spectroscopy (ICR-MS) [29], etc.

We now turn our attention to how these advantages of the FPT through clear identi-
fication of genuine spectroscopic information are of direct clinical relevance for cancer
diagnostics.

3.3 Application of the FPT to MRS data derived from cancerous & benign
ovarian fluid

We have performed initial studies [14,15] applying the FPT using data derived from
benign and malignant ovarian cyst fluid encoded at high magnetic fields in vitro [30].
In these papers, we first presented a comprehensive, systematic review of the literature
and concluded that this avenue is of clinical urgency for early ovarian cancer detection,
a goal which is still elusive and achievement of which would confer a major survival
benefit.

For the benign case, we derived the input data for the spectral parameters from those
reported for median concentrations Cmet (expressed in µmol/L) of twelve metabolites
that were characteristic of benign ovarian cyst fluid [30]. These median values were
obtained from 23 patients with benign ovarian cysts collected by Boss et al. [30]. Like-
wise, malignant concentrations correspond to the median values for malignant ovarian
cysts from 12 patients [30], and these are used as the input data for the malignant case.

Via the FPT, fully converged shape spectra were obtained using only N/16 = 64
signal points. This is shown in Fig. 3, for the benign case [top right panel (iii)] and
malignant case [bottom right panel (iv)]. In sharp contradistinction, the spectra gener-
ated using the FFT at the latter signal length are completely uninterpretable [top left
panel (i), benign case; bottom left panel (ii), malignant case].

Figure 4 provides an in-depth comparison of the FPT and the FFT with respect to
convergence of the absorption spectra at varying signal lengths with a fixed bandwidth
for the FID which was derived from the malignant ovarian cyst data. The top two pan-
els present the absorption spectra of the FPT at N/32 = 32 [left, (i)] and N/16 = 64
[right, (ii)]. At N/32 = 32 on panel (i), nine of the twelve metabolites are detected and
identified. The remaining three resonances require 64 signal points to be quantitatively
identified on panel (ii). At this latter signal length, all the peak heights are correct, and,
in agreement with Table 3, at N/16 = 64, the absorption spectrum is fully converged
in the FPT. The middle two panels show the performance for shape estimation by the
FFT at the same two short signal lengths as in the FPT. In sharp contrast to the FPT,
these FFT-generated spectra at N/32 = 32 [left, (iii)] and N/16 = 64 [right, (iv)]
where N = 1024, are rough and uninterpretable. Full convergence of the absorption
spectrum from the FFT requires sampling the FIDs with N = 32 K = 32768 signal
points and zero-filling to 64 K [bottom right panel, (vi)]. Here, K denotes kilobytes,
K = 1024. The bottom left panel (v) of Fig. 4 shows the performance of the FFT at
N = 8 K = 8192, where the 12 resonances are resolved, but their peak heights are not
all correct. This means that some of the metabolite concentrations from the FFT are
still insufficiently accurate even at N = 8 K. Moreover, it is seen in the Fourier panel
(v) from Fig. 4 that the threonine, lactate and alanine resonances in the range 1.30–
1.55 ppm have their baseline distorted relative to the converged spectra from panels
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Fig. 3 Absorption spectra for cases derived from benign and malignant ovarian cyst MRS in vitro encoded
data from Ref. [30]. Top panels compare the performance of the FFT [left (i)], FPT [right (iii)] at N/16 = 64
where N = 1024 for the benign case. The FPT is fully converged, but the corresponding FFT-generated
spectra are uninterpretable. A similar pattern is seen in the malignant case [bottom panels, FFT [left (ii),
FPT (right (iv)]. Adapted from Refs. [14,15]

(ii) (FPT) and (vi) (FFT). Note that the FPT does not use zero filling at all, whereas
the FFT does [each of the Fourier panels (iii)–(vi) was obtained by one zero filling],
i.e., doubling the nominal signal length N/M(M > 1) by padding N/M zeros.

The numerical results are shown in Table 3. We found that the FPT reconstructed
exactly all the input spectral parameters using very small fractions of the time signals.
It is particularly striking to note in this clinically-relevant context that for the peak
amplitudes (dk) and line-width (Im fk) from which the metabolite concentrations are
calculated, six digits of accuracy were required and achieved in this illustration to
benchmark the FPT.

A substantial number of MR-observable compounds were found to distinguish
between benign and cancerous ovarian lesions in Ref. [30]. Notably, concentrations
of adjacent resonances such as threonine (1.33 ppm), lactate (1.41 ppm) and alanine
(1.51 ppm) and the nearly overlapping resonances isoleucine and valine in the region

123



902 J Math Chem (2008) 44:884–912

11.52345
0.5

1

2
3
5

10

20
30
50

100

200
300
500

1000

2000

4000
B

0
 ≈ 14.1 T

N/32 = 32 (N = 1024)

FPT (−)

Malignant

Glc

Crn
Cr

Gln

Met

Lys

Ala

Lac

Val

Pade Absorption Total Shape Spectrum

(i)  Chemical shift (ppm)

R
e(

P
− K
 /Q

− K
) 

(a
u)

11.52345
0.5

1

2
3
5

10

20
30
50

100

200
300
500

1000

2000

4000
B

0
 ≈ 14.1 T

N/16 = 64 (N = 1024)

FPT (−)

Malignant

Converged
Glc

Cho

Crn

Cr

Gln

Met

Lys Ala

Lac

Thr
Val

Iso

Pade Absorption Total Shape Spectrum

(ii)  Chemical shift (ppm)

R
e(

P
− K
 /Q

− K
) 

(a
u)

11.52345
−10

−5

0

5

10

15

20 B
0
 ≈ 14.1 T

N/32 = 32 (N = 1024)

FFT

Malignant

Fourier Absorption Total Shape Spectrum

(iii)  Chemical shift (ppm)

R
e(

F
) 

(a
u)

11.52345
−20

0

20

40

60

80

100

120
B

0
 ≈ 14.1 T

N/16 = 64 (N = 1024)

FFT

Malignant

Fourier Absorption Total Shape Spectrum

(iv)  Chemical shift (ppm)

R
e(

F
) 

(a
u)

11.52345

1

2
3
5

10

20
30
50

100

200
300
500

1000

2000

4000
B

0
 ≈ 14.1 T

N = 8192

FFT

Malignant

Fourier Absorption Total Shape Spectrum

(v)  Chemical shift (ppm)

R
e(

F
) 

(a
u)

11.52345
0.5

1

2
3
5

10

20
30
50

100

200
300
500

1000

2000

4000
B

0
 ≈ 14.1 T

N = 32768

FFT

Malignant

Converged

Fourier Absorption Total Shape Spectrum

(vi)  Chemical shift (ppm)

R
e(

F
) 

(a
u)

CONVERGENCE of PADE and FOURIER ABSORPTION TOTAL SHAPE SPECTRA for VARYING FID LENGTHS (MALIGNANT)

FAST PADE TRANSFORM , FPT  (−)  :  TOP PANELS (i) and (ii) ,  FAST FOURIER TRANSFORM , FFT  :  MIDDLE and BOTTOM PANELS (iii) − (vi)

Fig. 4 Comparison of the FPT and the FFT with respect to convergence of the absorption spectra at vary-
ing fractions of the full signal length for the cases derived from malignant ovarian cyst MRS in vitro data
encoded by Boss et al. [30] with a high resolution NMR 600 MHz spectrometer. (B0 = 14.1 T). The top
two panels present the absorption spectra of the FPT at N/32 = 32 [left, (i)] and N/16 = 64 [right, (ii)],
where N = 1024. At N/32 = 32, nine of the 12 resonances are identified; the remaining three resonances
require 64 signal points to be identified. At N/16 = 64, the peak heights are all correct and the total
absorption shape spectrum is fully converged using the FPT. The middle two panels, (iii) and (iv), show
the performance of the FFT at these same two partial signals lengths (N/32, N/16; N = 1024). In sharp
contrast to the FPT, these FFT-generated spectra at N/32 = 32 and N/16 = 64 are rough, and uninterpret-
able. Full convergence of the absorption spectrum is achieved with the FFT at N = 32 K = 32768 signal
points [bottom right panel, (vi)], where K denotes kilobyte, K = 1024. The bottom left panel (v) shows
the performance of the FFT at N = 8 K = 8192, where the twelve resonances are resolved, but not with
all the correct peak heights. Moreover, the baseline in the range 1.30–1.55 ppm is distorted relative to the
converged spectra on panels (ii) (FPT) and (vi) (FFT). The FPT uses the original signal points with no zero
filling. By contrast, all the displayed results from the FFT are obtained by doubling the quoted FID length
with zero filling, as usual. Adapted from Ref. [14]
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of 1.02–1.04 ppm differ significantly in these two types of lesions [30]. The high
concentrations of these branched chain amino acids are seen as protein breakdown
products due to necrosis and proteolysis. When the customary (non-optimal) data
analytical methods are used, the so-named “spectral crowding” has been noted to be
a major problem in delineating these closely-lying resonances.

The presented results from Refs. [14,15] strongly suggest that the high resolution
of the fast Padé transform could help improve SNR, which has been a major obstacle
to the progress of in vivo applications of MRS for ovarian cancer diagnostics. Most
importantly, without any fitting or numerical integration of peak areas (the latter was
used in Ref. [30]), the FPT reliably yields the metabolite concentrations of primary
significance for distinguishing benign from malignant ovarian lesions. These features
of the FPT are deemed to be of critical benefit to ovarian cancer diagnostics via mag-
netic resonance spectroscopy, in particular for early detection, a goal which has thus
far been elusive, but achievement of which would definitely confer a major survival
advantage.

4 Importance of the results for research and clinical oncology

The results presented in this work are demonstrated to be of clear, direct and immediate
importance for clinical oncology. Since MRS and MRSI are increasingly recognized
as one of the key modalities for cancer diagnostics, surmounting the shortcomings
of current applications of these two modalities represents an urgent priority. Padé-
optimization offers a distinct possibility to realize this goal.

Besides confirming the high resolution and stability of the FPT in general studies
of MR total shape spectra [1–4], and thereby overcoming one of the major hindrances
to wider application of MRS and MRSI in oncology, we have now shown this supe-
rior resolution performance with respect to data directly derived from malignant and
benign ovarian samples [14,15]. This is the first time that the FPT has been applied
to this problem area. From the clinical viewpoint, it is important to mention that the
small size and motion of this organ have created major problems for in vivo applica-
tions of MRS. Thus far, there have been only a few investigations applying in vivo
MRS to evaluate cancerous ovarian lesions [31–34]. Altogether, some 18 malignant
and 54 benign lesions of various histopathology, as well as one borderline cancerous
adnexal mass have been examined in this way. Only a limited number of metabolites
could be identified and evaluated and their concentrations were estimated qualitatively
with inconclusive results. It has been suggested that insofar as the current problems
hindering encoding of high quality time signals are overcome, in vivo 1H MRS could
become the method of choice for evaluating ovarian lesions [35]. The present results
strongly suggest that Padé-optimized MRS could be instrumental here, as well.

In the present work, we have described our studies by establishing that the FPT
provides exact quantification of brain MRS time signals that closely match FIDs
encoded in vivo by clinical scanners at 1.5 T [5,9,12,25]. The highly precise con-
centrations (to 12 digits of accuracy) are given for 25 metabolites, including those
which are closely lying and even those which almost completely overlap. Likewise,
we have proven [14,15] that the FPT is capable of exactly reconstructing all the six
digit accurate input spectral parameters of 12 metabolites for benign and malignant
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ovarian cyst fluid MRS time signals that are derived from in vitro FIDs encoded with a
high-resolution 600 MHz NMR spectrometer [30], or equivalently, B0 = 14.1 T. Such
machine accuracy in simple [14,15] or double precision [5,6] is sought to benchmark
the FPT on the fully controlled input FID. Passing this most stringent test is far from
being academic. Quite the contrary, those estimators that cannot achieve a comparable
accuracy as the FPT for fully controlled FIDs have no chance whatsoever for reliable
performance in the case of uncontrolled FIDs such as those encoded in vivo by means
of MRS. Indeed, the maximal sought accuracy which is possible for noise-corrupted
synthesized or encoded FIDs is 3–4 stable digits in the reconstructed concentrations
of the genuine, clinically relevant metabolites. This level of the requested accuracy
has been demonstrated to be readily achievable by the FPT for both synthesized noise-
corrupted FIDs [6] and encoded, in vivo time signals [9–11]. It should be emphasized
that the majority of in vivo MRS studies have been based upon estimates of at most four
or five, or often even fewer metabolites [26]. As discussed in [13], in vivo MRS stud-
ies of the breast cancer have been mainly based only upon estimates of total choline.
On the other hand, in vitro MRS findings for a wide array of human cancers clearly
distinguish malignant and normal tissues, and frequently offer insights into molecular
mechanisms. The most important information for detecting malignant lesions is often
found in closely overlapping resonances, some of which decay rapidly and therefore
can only be detected at short acquisition times, as well as those in low concentration
[26,27]. The present studies [5,9,12,25] show that the FPT offers greater possibilities
to extract this rich spectroscopic information, which heretofore has remained untapped
with the conventional Fourier approach. Therefore, these studies can be considered as
benchmark and a paradigm shift. Together with the practical implementation described
in [13], a valid, exact and highly practical approach to quantification of MRS signals
has now been achieved by means of the FPT, and this could have profound implications
for improving the accuracy with which malignancies are diagnosed via MRS.

Distinguishing genuine from spurious (“noisy” or “noise-like”) information has
been a major difficulty for MRS. All post-processing fitting algorithms are limited
to guesswork about how many true metabolites actually underlie a given peak in the
shape spectrum. Such a dilemma is a critical stumbling block for clinical oncology:
many contradictory findings in tumour diagnostics are related to whether or not a
given metabolite was included in the original expansion basis sets such as those used
in e.g., the LCModel [36,37]. In our recent papers [6,25] via the powerful concept of
Froissart doublets (pole-zero cancellation), the FPT has been shown to solve this prob-
lem fully. A succinct summary of how this is accomplished is provided in the present
study for MR time signals corrupted with noise at the levels typically encountered in
clinical scanners with good SNR. Thus, for the first time it is now possible to com-
pute metabolite concentrations without guessing or ambiguity about the veracity of
this information. This novel approach is benchmarked via the Froissart doublets within
the FPT, and is given the name: “Signal–Noise Separation” as abbreviated accordingly
by SNS. We emphasize once again that the number of spurious resonances is always
several times greater than the true metabolites. In the present illustrations there were
128 resonances, but only 25 were genuine. Thus, 103 or over 80% were spurious. It is,
therefore, clearly of utmost importance for trustworthy clinical applications that the
genuine information be identified.
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Early detection of ovarian cancer is an urgent priority because of the dramatic
survival advantage this definitely would confer. When involving only the ovary itself
(Stage Ia), 5-year survival rates for ovarian cancer are 90% or better. However, the
vast majority of ovarian cancers are diagnosed after they have spread to the abdomen
(Stage III or higher), such that overall 5-year survival rates are very poor (less than
20%) [38]. However, existing screening methods do not offer specificity for ovarian
cancer in its early stages [39–41]. Our focus upon ovarian cancer should be seen
within the context of the on-going intensive work to find better methods for early
ovarian cancer detection. Not only does the FPT markedly enhance resolution of MR
spectra, but it also yields the unequivocal, exact parametric data needed to reconstruct
the metabolite concentrations which characterize ovarian cancer and distinguish this
from non-malignant samples.

We have begun investigations along these lines for breast and prostate cancer as
well as melanoma using the FPT; preliminary results are described in [13]. Therein we
also describe preliminary findings applying the FPT to MRI, 2D MRS and to MRSI,
with attention to improved target definition for radiotherapy.

A number of our recent publications have been directly and explicitly concerned
with the relevance of Padé-based molecular imaging through magnetic resonance for
clinical oncology [4,7,14,15,26,42–48]. We have paid particular attention to the short-
comings of current applications of MR-based modalities for cancer diagnostics and
their relationship to reliance upon the conventional Fourier method of data analysis.
We have shown that dilemmas surrounding metabolite assignment, the non-uniqueness
of fitting and quantification, as well as poor resolution and unfavorable SNR, represent
major obstacles for clinical MRS and MRSI with respect to timely tumor identifica-
tion, histological classification, tumor grading, assessment of response to therapy and
early detection of tumor recurrence. Our work specifically related to brain tumor diag-
nostics includes Refs. [26,44]. Also, Padé-based MRS and MRSI has been applied
in the context of early detection of cancers, especially ovarian [14,15], prostate [26]
and breast cancer [45–48]. We have performed detailed paired and logistic regression
analysis [45–47] which confirmed that a very rich “window” of information is pro-
vided by in vitro 1H MRS analysis of metabolite concentrations in malignant versus
non-cancerous breast tissue. This rich source of information could be tapped with
Padé-based signal processing of MRS and MRSI signals encoded from the breast.

We anticipate that MRS via Padé processing will reduce the false positive rates
of MR-based modalities and, moreover, will further improve the sensitivity of these
methods. Once this is achieved, and given that all MR-based diagnostic methods are
free from ionizing radiation, new possibilities for cancer screening and early detec-
tion will open up, especially for risk groups, e.g., the application of Padé-optimized
MRS in younger women at high risk for breast and/or ovarian cancer. The need for
accurate quantification of closely overlapping resonances has been particularly under-
scored for breast cancer diagnostics using MRS. Further, MRS with the accompanying
Padé quantification applied to prostate cancer is particularly important for diagnostic
enhancement, because of the current dilemmas surrounding prostate cancer screening
[e.g., cutpoints of prostate specific antigen (PSA), etc], as well as the public health
importance of this malignancy. Also, there is a great need for non-invasive diagnostic
support for physicians in the early detection of malignant melanomas. A person may
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have up to 100 moles, and to distinguish between malignant melanomas and benign
nevi is very difficult even for an experienced dermatologist. For a general practitioner,
it is often an impossible task. Padé-optimized MRS seems to be an excellent candidate
for further studies in this field by providing quantitative standards to better differentiate
malignant melanomas from benign lesions.

The strategic importance for clinical oncology of robust and uniform data process-
ing of MRS signals has been strongly emphasized by leading experts internationally,
including the U.S. National Cancer Institute. Particular emphasis has been placed on
the need for reliable quantitative information in cancer diagnostics with respect to
MRS [26,27,35,49–53].

On the basis of our work thus far, it follows that the fast Padé transform fulfills the
most stringent conditions for tumor diagnostics within magnetic resonance due to the
following critical features of this versatile estimator:

(i) Markedly enhanced resolution and signal-to-noise ratio compared to the con-
ventional Fourier-based techniques,

(ii) Provides precise numerical data for all peak parameters (position, height,
width and phase) for every true metabolite,

(iii) Specifies the exact number of metabolites from the encoded time signals and
can identify unambiguously overlapping metabolites, as well as metabolites
present in low concentrations, both of which are very often of critical clinical
importance,

(iv) Obtains the amplitude of each metabolite most accurately and separately from
an analytical expression dependent only upon the metabolite’s frequency, thus
obviating the customary need for solving a system of linear equations,

(v) By the Froissart filter efficiently separates noise from genuine metabolic infor-
mation,

(vi) Undergoes rigorous validation and error analysis,
(vii) Yields itself to efficient programming with optimally accurate results, and

(viii) Extends directly, in a straight-forward manner to multidimensional signal
and image processing, with cross-dimensional coherence, thus bypassing the
sequential one-dimensional approach of Fourier analysis.

Overall, we can say that this line of endeavor lays the basis for the next phase of
research activity in which the major goal is to further improve the resolution and diag-
nostic accuracy of MR-based methods, and for Padé-based MRS and MRSI to become
standard tools for clinical oncology.

5 Conclusion

Traditionally, the Padé approximant for any given power series is defined by the unique
quotient of two polynomials. However, the fast Padé transform, denoted by FPT, does
not necessarily require a power series as the usual starting point. For example, the FPT
is naturally ingrained in the Schrödinger picture of quantum mechanics and in the total
time-independent Green function for the studied system. The FPT is an efficient solver
of generalized eigenvalue problems, such as the quantum-mechanical evolution/relax-
ation matrix comprised of auto-correlation functions. These generic functions can be
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either obtained theoretically or measured experimentally. Auto-correlation functions
represent a veritable alternative formulation of quantum mechanics.

We demonstrate the advantages of the FPT relative to the fast Fourier transform,
the FFT, which is a single polynomial. Namely, the FPT can analytically continue
general functions outside their initial convergence domains and can evaluate the spec-
trum at any energy or frequency, whereas the FFT has no interpolation/extrapolation
features due to its restriction to the fixed Fourier grid points. Unlike the FFT which
supplies only the shape of a spectrum, the parametric FPT provides the exact number
of spectral components, including those which overlap, and precise quantification of
all four parameters (position, width, height, phase). Resolution in the FFT is low and
limited by its linearity. By contrast, the FPT is a non-linear estimator with a high
resolving power beyond the Rayleigh-Fourier bound which is constrained by the total
acquisition time. Moreover, unlike nearly all other parametric estimators which show
wild oscillations, the FPT exhibits a remarkably stable convergence with increasing
signal length. Finally, among all other signal processors, the FPT has the unique capa-
bility to unequivocally separate the physical from nonphysical content of time signals
embedded in noise. The ensuing capacity of the FPT for signal–noise separation, the
SNS, is reliably accomplished by the Froissart filter.

The Froissart filter for identification of spurious resonances is based upon the
appearance of Froissart doublets that enable cancellation of nonphysical poles and
zeros in the rational response function of generic systems exposed to external pertur-
bations. Hence the term “pole-zero cancellations.” A spurious resonance in a spectrum
appears as a nonphysical peak with its complex frequencies and amplitudes. Genu-
ine peaks are also fully characterized by complex frequencies and amplitudes, so the
problem is how to distinguish the true from the false information. The solution to
this extremely difficult and challenging problem is provided by the FPT, because this
method can identify with fidelity every false resonance by realization that all spuri-
ous pole are automatically accompanied by the corresponding spurious zeros. These
spurious pole-zero pairs are called Froissart doublets, according to their discoverer
who was the first to notice this remarkably important phenomenon in a numerical
experiment. By contrast, physical poles and zeros do not coincide with each other.
Such a clear distinction gives the possibility to unequivocally separate spurious from
genuine resonances. Computationally, the FPT achieves this separation by rooting
both the numerator and denominator polynomials. Since the Padé quotient is a mer-
omorphic function, the zeros of the numerator and denominator polynomial are the
zeros and poles of the response function, which is the frequency spectrum given by
the unique polynomial quotient. From the set of all the reconstructed poles and zeros,
the spurious couples are identified as Froissart doublets whenever the corresponding
poles and zeros coincide with each other. Once identified in this way, all the spurious
resonances can be discarded, and this constitutes the Froissart filter. Therefore, by
means of the Froissart filter, all the remaining spectral features are exclusively genu-
ine, physical resonances. In the present study we show that the resulting SNS concept
can even visually be spotted via the Argand plot for all the retrieved complex frequen-
cies. In such a two-dimensional plot, showing the imaginary versus real frequencies,
the confluence of spurious poles and zeros is at once noticed by the emergence of the
Froissart doublets only for the negative values of imaginary frequencies. These latter
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frequencies are unphysical, since they cause the complex harmonics in the time signal
to increase exponentially, thus leading to divergence. In sharp contrast, all the genuine
frequencies appear in the Argand plot with positive imaginary frequencies for which
the complex harmonics contain only decreasing exponentials with the ensuing con-
vergence of signal as the time becomes infinitely large. In other words, in the Argand
plot, there is a sharp and strict visual separation between the genuine and spurious
frequencies, because they reside in two disjoint parts of the complex frequency plane.
The accompanying confirmation of the identification of all the Froissart frequencies
is another extraordinary occurrence, which consists of yielding zero values of the
spurious amplitudes. This is physically plausible, and it also becomes immediately
obvious from the Cauchy residue formula for the amplitudes in the polynomial canon-
ical form which is annulled automatically, whenever poles and zeros of the response
function coincide. This is precisely the case, by definition, with the Froissart spurious
resonances. In this way, the FPT offers a unique prescription for identifying nonphys-
ical information from time signals by detecting the coincidence of spurious poles and
zeros, as well as by identifying the zero values for the spurious amplitudes. One does
not even need to bother to discard the found nonphysical resonances, because the spu-
rious poles and zeros automatically cancel each other in the response function written
in the canonical form of the polynomial quotient in the FPT. The equivalent of this
pole-zero cancellation also takes place through zero-valued spurious amplitudes in
the alternative representation of the response function given by the Heaviside partial
fraction decomposition.

In the present illustrations, aside from being universally applicable to all time sig-
nals, we show how the SNS concept can become an invaluable tool to aid magnetic
resonance spectroscopy, MRS, which is used as one of the most powerful modern
modalities in early cancer diagnostics.
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